Dr James Tyacke
Senior Lecturer in Aerospace Engineering (Aerodynamics)
Howell Building 123b
- Email: james.tyacke@brunel.ac.uk
- Mechanical and Aerospace Engineering
Research area(s)
I am currently focused on Urban Air Mobility Vehicle modelling and Geothermal Energy. I have recently investigated installed jet engine aeroacoustics using LES, solving challenges such as the use of the Ffowcs Williams-Hawkings method for complex geometry installed ultra-high bypass ratio jets under flight conditions. Previously I have pioneered engine-airframe coupling where an engine with bypass duct internal geometry generates resolved turbulence and is coupled to a jet-pylon-wing-flap geometry. To reveal noise generation mechanisms I am developing parallel analytical tools for 3D unsteady datasets. Prior to this I investigated application of LES to gasturbine zones. Flows studied included internal cooling, labyrinth seals and LPT/HPT blades. This investigation defined where LES is suitable and affordable relative to rig testing. It also provided a flow categorisation and framework for performing LES in industry, identifying future challenges.During my PhD, I studied conjugate heat transfer for an array of heated cubes and convective heat transfer within ribbed ducts and within large electronics system enclosures. For these I tested a wide range of linear and non-linear RANS models, linear and mixed non-linear LES sub-grid scale models, hybrid LES-RANS and high-order central and upwind spatial discretisations.
Research Interests
My interests lie in tackling challenging and often complex geometry flows using LES and HPC and the use of hybrid LES-RANS to reduce computational cost. Wider research includes solver technology, utilising both second and higher order numerical methods to enable selective application of the best tools for industrial use and to understand detailed flow physics. Detailed datasets can then also be exploited to improve lower order design modelling.
I am Director (numerical methods) of the Brunel Aerospace Research Centre (ARC). With a vibrant multi-disciplinary research culture, the ARC solves todays pressing aerospace challenges. We pride ourselves in supporting diverse researchers at all career stages and working with the largest and smallest industries. Please get in touch to see how the ARC can meet your needs.
I am Editor for the Cambridge Unsteady Flow Symposium proceedings which has now been published:
Research links
Co-author network
- Dr Jan Wissink
- Dr Edward Smith
- Dr Colin Axon
- Prof Maria Kolokotroni
- Prof Savvas Tassou
- Visualise network